
Confabulation Based Sentence Completion for Machine Reading*

Qinru Qiu1, Qing Wu2, Daniel J. Burns2, Michael J. Moore2, Robinson E. Pino2, Morgan Bishop2, and
Richard W. Linderman2

1Dept. of Electrical & Computer Engineering
State University of New York at Binghamton

Binghamton, NY 13850, USA

2Air Force Research Laboratory
Information Directorate, RITC

525 Brooks Road, Rome, NY 13441, USA

Abstract — Sentence completion and prediction refers to the
capability of filling missing words in any incomplete sentences. It
is one of the keys to reading comprehension, thus making
sentence completion an indispensible component of machine
reading. Cogent confabulation is a bio-inspired computational
model that mimics the human information processing. The
building of confabulation knowledge base uses an unsupervised
machine learning algorithm that extracts the relations between
objects at the symbolic level. In this work, we propose
performance improved training and recall algorithms that apply
the cogent confabulation model to solve the sentence completion
problem. Our training algorithm adopts a two-level hash table,
which significantly improves the training speed, so that a large
knowledge base can be built at relatively low computation cost.
The proposed recall function fills missing words based on the
sentence context. Experimental results show that our software
can complete trained sentences with 100% accuracy. It also gives
semantically correct answers to more than two thirds of the
testing sentences that have not been trained before.

Keywords – cogent confabulation, machine reading, sentence
completion, unsupervised learning, hash table

I. INTRODUCTION

Sentence completion and prediction, which refers to the
capability of filling missing words in an incomplete sentence,
is one of the keys to reading comprehension. In this paper, we
focus on modeling, training and recall techniques for
automatic sentence completion using unsupervised machine
learning. Automatic sentence completion can have many
important applications. It can be used to predict and complete
a sentence to reduce the user keystrokes. It can be used to
improve the accuracy of Optical Character Recognition
(OCR) by providing semantic information. With careful
design, a sentence completion test can provide quantitative
measurement of the quality of the knowledge base accrued
during unsupervised machine reading.

To complete a sentence, it requires not only the appropriate
vocabulary, but also the ability to analyze the given sentence
and identify the structural and semantic clues that determines
the meaning and nature of the missing words. Therefore, a
large vocabulary, the prior knowledge in semantic
connections of words as well as a good language sense are
important to accomplish this task. These must be obtained
from extensive reading and training.

Many of the previous works in sentence completion aim at
providing a “tab-complete” editing assistance. In [1], an
“interactive keyboard” is proposed that predicts the most
likely keystrokes based on the past sequence. References
[2]~[4] propose techniques to predict the next user command
in a Unix system. The problem of natural language sentence
completion is considered in some typing assistance tools for
apraxic [5] and dyslexic [6]. They provide a list of possible
word completions for users to choose from. The authors of [7]
propose an interactive word-completion algorithm based on
integrated semantic knowledge and n-gram probabilities. The
authors of [8] propose an information retrieval approach for
sentence completion. It is further improved in [9] by using an
n-gram language model [12].

In this work we focus on the general sentence completion
problem. The input of our problem is a sentence fragment
with missing words at random locations. We are interested in
filling in the missing words so as to create a syntactically
correct and semantically coherent sentence. The sequence
analysis techniques in [1]~[4] are not applicable to our
problem since there is no relative past information. The n-
gram language model analyzes the sentence and predicts
words in a sequential order from left to right. It may not be
effective to the general sentence completion problem where
the missing words can locate in the middle or at the beginning
of a sentence.

In this paper, we adopt the cogent confabulation model [10]
to solve the sentence completion problem. Cogent
confabulation is a bio-inspired model that mimics the human
information processing. It is an unsupervised machine
learning algorithm that extracts posterior probabilities among
objects at the symbol level. In this work, we apply cogent
confabulation to extract the relations among words in a
sentence. A knowledge base (KB) is obtained by reading an
extensive body of literature. When given an incomplete
sentence, the most appropriate words will be selected based
on the knowledge base. The selection procedure is an analogy
to the activation of the human neurological system. Each
word (or phrase) is analogy to a set of neurons and the
posterior probabilities among words/phrases are analogy to
the weight of the synapses connecting the neurons. The
neurons with the highest excitation will be activated and
further excite other neurons. When this procedure converges,
the neurons (i.e. words or phrases) with the highest excitation
will be selected. * Received and approved for public release by AFRL on 11/03/2010, case

number 88ABW-2010-5869.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Confabulation Based Sentence Completion for Machine Reading

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Information Directorate, RITC,525
Brooks Road,Rome,NY,13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
to appear in Proc. of IEEE Symposium Series on Computational Intelligence (SSCI), April, 2011.

14. ABSTRACT
Sentence completion and prediction refers to the capability of filling missing words in any incomplete
sentences. It is one of the keys to reading comprehension, thus making sentence completion an
indispensible component of machine reading. Cogent confabulation is a bio-inspired computational model
that mimics the human information processing. The building of confabulation knowledge base uses an
unsupervised machine learning algorithm that extracts the relations between objects at the symbolic level.
In this work, we propose performance improved training and recall algorithms that apply the cogent
confabulation model to solve the sentence completion problem. Our training algorithm adopts a two-level
hash table which significantly improves the training speed, so that a large knowledge base can be built at
relatively low computation cost. The proposed recall function fills missing words based on the sentence
context. Experimental results show that our software can complete trained sentences with 100% accuracy.
It also gives semantically correct answers to more than two thirds of the testing sentences that have not
been trained before.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In the rest of the paper, we refer to the procedure of
knowledge base construction as the training process and refer
to the procedure of words selection and sentence completion
as the recall process. The characteristics of the proposed
sentence completion technique can be summarized as the
follows:

1. It is based on the cogent confabulation model, which
captures the posterior probability among words and
phrases in a sentence. Therefore, our technique completes
the sentence in a way such that the likelihood of the
observed part is maximized. In contrast, the n-gram model
maximizes the likelihood of the missing words. Although
there is no definite advantage of one approach over
another, they sometimes give different results.

2. Our knowledge base provides the relations between all
words or word pairs in the sentence. This enables the
software to fill in the missing words at the beginning of
the sentence based on the information provided later.

3. The recall function mimics the information processing in
the human neurology system, where neurons are exciting
and being excited at the same time. Therefore, when
multiple entries are missing, the selections of these entries
evolve simultaneously.

4. Comparing to the original confabulation model proposed in
[10], our model achieves better performance as we allow
multiple symbols to be excited at the same time and hence
has a larger search space. Our training function adopts a 2-
level hash table, which significantly improves the training
speed, so that we can extract knowledge from a larger
training corpus in relatively short time. This enables the
system to perform extensive reading while still
maintaining a high quality knowledge base.

The rest of the paper is organized as the follows. The
background of the cogent confabulation model is provided in
Section II. The detailed discussion of our knowledge model
and our training/recall algorithms are provided in Section III.
Section IV presents the experimental results and Section V
gives the conclusions and our vision on future works.

II. BACKGROUND

Cogent confabulation [10] is an emerging computation model
that mimics the Hebbian learning, the information storage and
inter-relation of symbolic concepts, and the recall operations
of the brain. Based on the theory, the cognitive information
process consists of two steps: learning and recall. During the
learning step, the knowledge links are established and
strengthened as symbols are co-activated. During recall, a
neuron receives excitations from other activated neurons. A
“winner-takes-all” strategy takes place within each lexicon.
Only the neurons (in a lexicon) that represent the winning
symbol will be activated and the winner neurons will activate
other neurons through knowledge links. At the same time,
those neurons that did not win in this procedure will be
suppressed.

Figure 1 shows an example of lexicons, symbols and
knowledge links. The three columns in Figure 1 represent
three lexicons for the concept of shape, object and color with
each box representing a neuron. Different combinations of
neurons represent different symbols. For example, as shown
in Figure 1, the pink neurons in lexicon I represent the
cylinder shape, the orange and yellow neurons in lexicon II
represent a fire extinguisher and a cup, while the red neurons
in lexicon III represent the red color. When a cylinder shaped
object is perceived, the neurons that represent the concepts
“fire extinguisher” and “cup” will be excited. However, if a
cylinder shape and a red color are both perceived, the neurons
associated with “fire extinguisher” receives more excitation
and become activated while the neurons associated with the
concept “cup” will be suppressed. At the same time, the
neurons associated with “fire extinguisher” will further excite
the neurons associated with its corresponding shape and color
and eventually make those symbols stand out from other
symbols in lexicon I and III.

Figure 1. A simple example of lexicons, symbols and
knowledge links.

A computational model for cogent confabulation is proposed
in [10]. Based on this model, a lexicon is a collection of
symbols. A knowledge link (KL) from lexicon A to B is a
matrix with the row representing a source symbol in A and the
column representing a target symbol in B. The (i, j)th entry of
the matrix represents the strength of the synapse between the
source symbol si and the target symbol tj. It is quantified as
the conditional probability P(si | tj). The collection of all
knowledge links is called a knowledge base (KB). The
knowledge bases are obtained during the learning procedure.
During recall, the excitation level of all symbols in each
lexicon is evaluated. Let l denote a lexicon, Fl denote the set
of lexicons that have knowledge links going into lexicon l,
and Sl denote the set of symbols that belong to lexicon l. The
excitation level of a symbol t in lexicon l can be calculated as:

 ∑ ∑ ln
|

 , .

The function I(s) is the excitation level of the source symbol
s. Due to the “winner-takes-all” policy, the value of I(s) is
either “1” or “0”. The parameter p0 is the smallest meaningful

Shape

Object

RED

Color

Lexicon I Lexicon II Lexicon III

value of P(si | tj). The parameter B is a positive global
constant called the bandgap. The purpose of introducing B in
the function is to ensure that a symbol receiving N active
knowledge links will always have a higher excitation level
than a symbol receiving (N-1) active knowledge links,
regardless of the strength of the knowledge links.

III. CONFABULATION BASED SENTENCE COMPLETION

In this section, we will present the knowledge base (KB)
model for the sentence completion software followed by the
training and recall algorithms.

A. Knowledge Base Model

Similar to [10], in this work, we assume that the maximum
length of a sentence is 20 words. Any sentence that is longer
than 20 words will be truncated. We also assume that the
empty space is a word. Any sentence that is shorter than 20
words will be padded with empty spaces.

A total of 39 lexicons are constructed for a sentence. They are
divided into 2 groups. Lexicons 0 through 19 belong to the
first group. Each group 1 lexicon associates to a single word
in the sentence. The ith lexicon represents the ith word.
Lexicons 20~38 belong to the second group. Each group 2
lexicon associates to a pair of adjacent words. The lexicon
labeled (20+i) represents the pair of words in the (i+1)th and
(i+2)th location. Associated to each lexicon is a collection of
symbols. A symbol is a word or a pair of words that appears
in the corresponding location. We use SA to denote the set of
symbols associated to lexicon A.

A knowledge link (KL) from lexicon A to B is an
matrix, where M and N are the cardinalities of symbol sets SA
and SB. The (i, j)th entry of the knowledge link gives the
conditional probability | , where , and .
Symbols i and j are referred as source symbol and target
symbol.

For our sentence completion system, between any two
lexicons there is a knowledge link. If we consider the lexicons
as vertices and knowledge links as directed edges between the
vertices, then they form a complete graph.

B. Training Algorithm Using Hash Technique

The training of the confabulation model is the procedure to
construct the probability matrix between source symbols and
target symbols. Figure 2 gives a simple algorithm for the
construction of the knowledge base. First the program scans
through the training corpus and count the number of co-
occurrences of symbols in different lexicons. Then for each
symbol pair it calculates their posterior probability.

Although computationally simple, the challenge of this
training algorithm is its memory complexity. For example,
the English version of the book “Round the Moon” has about
47 10 words. Our analysis shows that it has 23 10
distinguished symbols (i.e. words and word pairs). Figure 3
shows how the symbols are distributed over different
lexicons. As we mentioned earlier, each knowledge link is an

 matrix, where M and N are the symbol size of the
source and target lexicons. Without any compression, the
trained knowledge base will have 2.3 10 entries which are
equivalent to be 9.2 GBytes.

Figure 2. A simple algorithm of knowledge base
construction.

Figure 3. Symbol distribution in different knowledge
links.

Fortunately, the knowledge links are sparse matrices. Only
less than 0.1% of the matrix has non-zero values. Therefore,
an option to reduce the memory cost is to store the knowledge
using the list of list (LIL) or the Yale format, which have been
widely used for sparse matrix storage. However, this leads to
the second problem. As the size of the training corpus grows,
the number of symbols of each lexicon can easily go up to
hundreds of thousands. Even with the best search algorithm,
the time to locate the entry in the compressed matrix grows
logarithmically and soon the algorithm will become
prohibitively slow. Furthermore, each symbol is a string of
characters (i.e. word or word pair). Therefore, the search
procedure consists of a sequence of string comparisons,
which will further slow it down.

In this work, we propose to store the knowledge base using a
hash table and speed up the search using a 2-level hash
technique. Figure 4 gives the architecture of a hash table. The
hash function maps each identifying value (i.e. key) to a
bucket in an array. Hash collisions occur when multiple keys
map to the same entry. Each entry’s keys are maintained in a
linked list. Each entry in the array and the collision list is
associated with a number that gives the location of the key in
the storage table. If the key is neither in the array list nor the
collision list, then it is a new key and a new entry will be
allocated for it.

Reset the co-occurrence matrix to 0, where 0 , 39
//count the co-occurrence of symbols
For each sentence in training corpus {

For each lexicon A, 0 39 {
 For each lexicon B, 0 39 {
 If , ++;

 }
}

}
//calculate the posterior probability (i.e. knowledge link)

∑

, , , 0 , 39

0

1000

2000

3000

4000

5000

1 4 7 10 13 16 19 22 25 28 31 34 37

Si
ze
 o
f s
ym

bo
l s
et

Knowledge links

Figure 4. Architecture of a hash table.

Our training function maintains two levels of hash tables. At
the upper level, there is one large hash table with 2 buckets.
Its function is to encode each unique word or word pair to an
identifying number, which is referred as source/target symbol.
At the lower level, there are 38 39 1482 smaller hash
tables. Each one of them has 2 buckets. The second level
hash tables transform the pair of symbols in the source and
target lexicon to a number that identifies the location of their
corresponding knowledge link entry. Figure 5 gives an
example of the 2-level hash function.

Figure 5. Two-level hash function locates the knowledge
link entry of the given input strings.

The average size of our training file is 358 Kbyte. On
average, each training file has 64 10 words and 35 10
distinguished words and word pairs. Our experimental results
show that the average collision number of the first level hash
table is 0.02. This means that, to search the symbol value of a
string, we need 1.02 read accesses in average. Compared to a
binary search technique which requires 35 10 15
read accesses, the hash table provides almost 15 times speed
up. More experimental results on the performance of the hash
based training function will be presented in Section IV.

At the end of training, the knowledge base will be written to a
file. The first part of the file is the symbol encoding of all the
unique words and word pairs that have been encountered in
the training corpus. The second part of the file gives the
content of the knowledge links. Each knowledge link is a
sorted LIL. Each element in the LIL specifies the source and
target symbol of the corresponding entry in the knowledge
link matrix as well as the strength of this link (i.e. the
posterior probability between the source and target).

C. Incremental learning

To enable extensive reading, the training algorithm should be
able to read and learn continuously. Each time after a new
book or article is read, the knowledge learned must be added

into the existing knowledge base, which is referred as main
knowledge base, and we refer this as incremental learning. It
is the procedure of merging two knowledge bases together.

Figure 6 shows the work flow of incremental learning. It
consists of 2 steps, reading and merging. The former is to
generate a new KB from the given training file and the latter
is to combine the new KB with the main KB.

Figure 6. The incremental learning involves 2 steps:
reading and merging.

Figure 7. Flow of knowledge base merging.

Figure 7 gives the algorithm of knowledge base merging.
Because the new knowledge base and the main knowledge
base are trained at different times, they encode the word and
word pairs in different ways. Therefore, the first step to
merge two knowledge bases is to unify their symbolic
representation. After that, for each knowledge link, we load
the main KB and new KB and store them as a list of list
(LIL). The knowledge links from main KB and new KB are
denoted as KL1 and KL2 respectively. Note that both
knowledge links are sorted however based on their own
symbol encoding scheme. We keep the KL1 and sort the KL2
based on the new symbol encoding scheme. After that, we
merge the two together.

Although the size of the knowledge base can easily go up to
several Gigabytes, during the merging, only 2 knowledge
links are maintained in the memory, therefore, the memory
complexity of the merging algorithm is well controlled. The
computation complexity of merging two sorted lists is linear
with respect to the size of the list. Therefore, the computation
complexity of the algorithm is bounded by the complexity to
sort KL2, which is), where n is the size of KL2. Note

we have now to decide how ….

sA: 12 sB: 6

KLAB[103]

Level 1 hash to get the symbol id

Level 2 hash to locate the
knowledge link entry

For each symbol in the new KB, find their encoding in the main KB;

For each knowledge link i{

Load the knowledge link from main KB and denote it as KL1;

Load the knowledge link from new KB and denote it as KL2 ;

Sort the rows and columns of KL2 based on the new symbols coding;

for each row in KL2 {

if the row is in KL1 then merge the two rows;

else append the row to KL1;

}

}

Input 1

Input 2

Input 3

Input 4

1:Input 1

2:Input 2

3:Input 3

4:Input 4

…

…

…

Hash
Function

Buckets
Collision
entries

Storage
Table

Input
keys

File i

Reading
New
KB

Main
KB

Main
KBFile i+1

Reading
New
KB

Main KB

Merging

Merging

that KL2 is one of the knowledge links in the new KB, which
is obtained after reading one training file, while KL1 is one of
the knowledge links in the main KB, which is the
combination of multiple KBs. It is obviously more efficient to
sort KL2 instead of KL1 because| | | |.

D. Recall Algorithm

Figure 8. Sentence completion: recall.

The recall algorithm fills in the blank spaces in an incomplete
sentence. For those lexicons whose content is given, we first
encode the string to its symbolic representation. The symbol
is labeled as “active”. Then for each lexicon whose content is
unknown, we calculate the excitation level of its symbols. The
excitation level of a symbol i in lexicon B is defined as:

 ∑ ∑ ,

where is the knowledge value from symbol j in
lexicon A to symbol i in lexicon B. The N highest excited
symbols in this lexicon are set to be active. These symbols
will further excite other symbols in other unknown lexicons.
This procedure will continue until the activated symbols in all
lexicons do not change anymore. If the convergence cannot
be reached after a given number of iterations, then we will
force the procedure to converge. After that, we will reduce the
value of N and repeat the above procedure. The entire recall
procedure will stop when N is reduced to zero.

Experimental results show that increasing the value of N
helps to give more meaningful sentence completion results;
however, it also increases the runtime exponentially.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results for the
performance of the training algorithm and the quality of the
recall algorithm.

A. Performance of the training function

Figure 9. Size of the training corpus.

Figure 10. Performance of level 1 hash function.

Figure 11. Performance of level 2 hash function for KL
#400.

Our training corpus consists of 73 classic literatures,
including the works from Aesop, Louisa May Alcott, James
Matthew Barrie, and the Bronte sisters, et al. Each book is
used as a separate training file. To avoid extremely long
sentences, we assume that all punctuations except ‘`’ and ‘-’
indicate an end of a sentence. Figure 9 shows the number of
words and the number of distinguished words/word pairs in
the training corpus. As we can see, the variance in the number
of distinguished words/word pairs is much smaller than the
variance of the sizes of the training files.

In the first setup, incremental training is used in the
experiment. Each time after a book is trained; the new
knowledge base will be merged to the main knowledge base.
Figure 10 shows the performance of the first level hash
function by comparing its complexity to the complexity of

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Th
o
u
sa
n
d
s

#of words

of distinguished words/word
pairs

8

9

10

11

12

13

14

15

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

#
o
f r
e
ad

 a
cc
e
ss
e
s
o
f
b
in
ar
y

se
ar
ch

#
 r
e
ad

 a
cc
e
ss
e
s
o
f
H
as
h

fu
n
ct
io
n

Training file ID

Hash table complexity
Binary search complexity

10

11

12

13

14

15

16

17

18

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

#
o
f r
e
ad

 a
cc
e
ss
e
s
o
f
b
in
ar
y

se
ar
ch

#
re
ad

 a
cc
e
ss
e
s
u
si
n
g
h
as
h

fu
n
ct
io
n

Training file ID

Hash table complexity

Binary search complexity

for each lexicon whose content is known{

encode the word/word pair to its symbol representation;

set the symbol to be active;

}

for (N = MAX_AMBIGUIOUS; N > 0; N‐‐) {

converged = FALSE;

iter = 0;

while(!converged) {

for each lexicon whose content is unknown{

for each symbol i associated to the lexicon {

calculate the excitation level of i;

}

select the N highest excited symbols and set them to be active;

}

iter ++;

if (the activation set does not changesince the last iteration)

then converged = TRUE;

if (iter >= MAX_ITERATION)

then converged = TRUE;

}

}

Training file ID

binary search. In average, to find the symbol encoding of a
string, the average number of read access is 1.02 and 14.9
using the hash table and the binary search respectively.
Therefore, using the hash technique provides almost 15X
speed up in performance.

Figure 11 shows the similar results for the 2nd level hash
function. There are 38 39 1482 hash tables in the
second level. Here we only report the result for the one which
corresponds to the knowledge link #400. As we can see from
the figure, the average number of read access to locate a
knowledge entry in the knowledge link matrix is 1.3 using
hash table, and it is 12.8 using binary search.

Figure 12 shows the distribution of the number of collisions
of the hash table for knowledge link #400. The training file
for this data is L. M. Alcott’s “Little Woman”. The largest
collision is 4, which happens to only 1 entry in the knowledge
link matrix while the vast majority of the entries have no
collision.

Figure 12. The distribution of the number of collisions in
the second level hash table for KL #400. (training file:

“Little Woman” by L. M. Alcott)

Figure 13. Performance of training.

Figure 13 shows the performance of our incremental learning
algorithm. In the figure, we report the overall accumulated
learning time, as well as the accumulated reading time and the
accumulated merging time. As we can see, the times to merge
the two knowledge bases dominate the computation cost of
the incremental learning. We also concatenated all the
training files and training them together. The result is
reported as “One shot training time” in the figure. As we can
see, the training time of the concatenated files is almost the
same as the accumulated training time when these files are
trained separately. This is because, due to the help of the hash
function, the time to locate a knowledge entry remains almost
constant even though the size of the knowledge base

increases. However, because the “one shot” training has to
maintain the entire KB in the memory, it soon exceeds the
memory limit, which is set to be 500,000 entries per
knowledge link. Therefore, it can train at most 31 books. In
contrast, the incremental training only has to keep just one
knowledge link in the new KB and the main KB. Therefore,
its performance is sustainable.

B. Quality of sentence completion outputs

In the first setup, we use the recall function to complete some
trained sentences. We arbitrarily selected 69 sentences from
the training text and randomly remove words with 0.3
probabilities. Table 1 gives the quality of the recall when the
MAX_AMBIGUITY varies from 1 to 20. We categorize the
result of the recall into 3 groups. A perfect recall refers to the
cases when the exact test sentences are recalled. A correct
recall refers to the cases when the recall function does not
give the exact test sentence; however gives another sentence
in the test corpus. Although the result is not exactly what we
asked for, it is still correct. A wrong recall refers to the cases
when a sentence not in the training text has been
confabulated. Our results show that, when
MAX_AMBIGUITY is greater than or equal to 5, all
sentences are recalled correctly. Otherwise, about 3% of the
sentences cannot be correctly recalled.

Table 1. Recall of the trained sentences.

MAX_AMBIGUITY Perfect
recall

Correct
recall

Wrong
recall

20 66 3 0
10 66 3 0
5 66 3 0
2 64 3 2
1 64 3 2

In the second setup, we evaluate the algorithm with simple
sentence completion tests extracted from a Kindergarten
workbook. Table 2 gives the list of input sentences and
sentences completed by our program. None of the sentences
have been read during the training. The answers that are not
reasonable are highlighted in bold. As we can see, 10 of the
15 sentences are completed correctly.

In the third setup, we use the book “Great Expectations” by
Charles Dickens, and a children’s story book “Why the Sea is
Salt” as our test files. Neither of the books has been read
during the training procedure. From each book we randomly
picked 100 sentences and then randomly took out 30% of the
words from each selected sentence.

Some of the decimated sentences and the results produced by
our sentence completion software are listed. The underlined
texts in italic are completed by the software. We can see that
the majority of the confabulated sentences read reasonably
well with correct grammar. While a few of them are with
minor grammar errors or do not really make sense.

1

10

100

1000

10000

0 1 2 3 4

#
o
f k
n
o
w
le
d
ge

e
n
tr
ie
s

#of collisions

Collision
Distribution

0.1

1

10

100

1000

10000

100000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Ti
m
e

Training file ID

One shot training time

Accumulated learning time (Incremental)

Accumulated reading time (Incremental)

Accumulated merging time (Incremental)

Table 2. Completion of simple sentences.

 Input sentence Completed sentences

1 I a good idea I had a good idea

2 But he has a lot work to

do

But he has a lot to work to

do

3 He gets help his friends He gets help to his friends

4 are many jobs to do You are many jobs to do

5 They so much work They do so much work

6 the boys work And the boys work

7 They clean clean They clean were clean

8 That car not clean That car took not clean

9 There many houses in

town

There were many houses in

town

10 Cars on the streets Cars lamps on the streets

11 He works in store He works in her store

12 He lives the house He lives in the house

13 A tornado coming A tornado is coming

14 The boy didn’t want the

tornado come

The boy didn’t want the

tornado to come

15 No was happy about this No I was happy about this

Input: ____ the poor ____ wife.
Output: Said the poor invalid wife.

Input: ____ gone with ____ ____.
Output: And gone with the clouds.

Input: Ladies ____ ____.
Output: Ladies and gentlemen.

Input: At which crisis I partially ___ the use of my ____.
Output: At which crisis I partially recovered the use of my senses.

Input: As its on ____ ____ service.
Output: As its on the morning service.

Input: ____ these things ____ ____ without then knowing that
____ ____ ____.
Output: And these things had been without then knowing that they
became realities.

Input: ____ Joe ____ to hammer and clink.
Output: And Joe have to hammer and clink.

Input: ___ drew a pitcher of beer ___ the ___.
Output: And drew a pitcher of beer in the wall.

Input: ___ the ___ man ___ determined to deliver the cows ___
___ Hiysi.
Output: At the last man he determined to deliver the cows back
to Hiysi.

Input: To make ____ ____.
Output: To make matters straight.

Input: Where are we ___ to get something to ___.
Output: Where are we going to get something to me.

Input: ___ will we celebrate.
Output: When will we celebrate.

Input: He did ___ know what ___ do.
Output: He did not know what to do.

Input: Why ___ ___ come ___?
Output: Why are you come here?

Input: Looking ___ ___ rich man.
Output: Looking at the rich man.

Input: ___ ___ take it to Hiysi.
Output: Will you take it to Hiysi.

Input: ___ ___ ___ lived deep in the ___
Output: And I have lived deep in the way.

Input: ___ caused ___ Joe reentering the ___ empty handed.
Output: That caused Ned Joe reentering the brook empty handed.

Input: And then ___ stood ___.
Output: And then she stood still.

Input: Opening ___ door ___spit stiffly ___ ___ high stocks.
Output: Opening the door and spit stiffly enter before high stocks.

Input: I ___ ___ little ___ of my scattered ___.
Output: I went a little out of my scattered to.

Input: ___ am ___ a ___ in ___ name ___ the ___.
Output: I am going a tell in the name of the father.

Input: And pray ___ ___ you ___ ___ ___.
Output: And pray circulate them you three influential quarters.

In the last setup, we test the system using the Rotter
incomplete sentence test [11]. The Rotter test is usually used
to find out the personality and the psychological state of the
subject. About 24 incomplete sentences are fed into the
system; all of them are completed with meaningful output. 11
out of the 24 output sentences are exactly the same as
sentences in the training file. The following is a list of these
11 sentences.

 I feel deeply interested in her.

 I regret that they did not visit us before sailing.

 I am afraid of what may happen if I.

 My father is willing to give you a last chance.

 The future wellbeing of their child.

 My nerves are torn to pieces.

 Girls were made to take care of boys.

 School would be a complete change.

 I need not narrate in detail the further struggles I had.

 I hate anybody to come upon me so unexpectedly.

 I wish these papers did not come in the house.

The other 13 sentences are made up (or “confabulated”) by
the program. They are listed in the next.

 Other people are like those stupid hoppers.

 I am best when to be able to do it.

 What bothers me is going to say next before he says it.

 The happiest time is coming when it will take the place.

 I dislike to dwell on the result.

 I failed to see what I did.

 A home is at the end of the gallery opened.

 Boys can be of the greatest assistance to me.

 My mother always on leaving the letter unanswered.

 I suffer matters to take their course.

 Other kids were couched in language which made

Michel jump.

 My greatest worry is to love her for her tender sympathy.

 What pains me is to be in the house.

V. CONCLUSIONS AND FUTURE WORKS

We have introduced the modeling, training and recall
techniques of our confabulation based sentence completion
software. The hash based training algorithm supports
extensive reading in relatively short time and at the same time
maintains a high quality knowledge base. The software can
recall sentences in the training files with 100% accuracy. It
can also fill in missing words in simple sentences or provide
meaningful sentences based on the given initial words.
Although it gives promising results, some of the sentences
provided by the software are not logically correct. One
promising method to improve the results is to incorporate
semantic information (such as parts of speech) with the
confabulation model and algorithms.

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER

This work is funded by the Air Force Office of Scientific
Research, under contract FA8750-10-C-0233.

Any Opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of AFRL or
its contractors.

REFERENCES

[1] J. darragh and I. Witten, “The Reactive keyboard,” Cambridge
University Press, 1992.

[2] H. Motoda and K. Yoshida, “Machine learning techniques to
make computers easier to use,” Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, 1997.

[3] B. Davison and H. Hirsch, “Predicting sequences of user
actions,” Proceedings of the AAAI/ICML Workshop on
Predicting the Future: AI Approaches to Time Series Analysis,
1998.

[4] B. Korvemaker and R. Greiner, “Predicting Unix command
lines: adjusting to user patterns,” Proceedings of the National
Conference on Artificial Intelligence, 2000.

[5] N. Garay-Vitoria and J. Abascal, “A comparison of prediction
techniques to enhance the communication of people with
disabilities,” Lecture Notes in Computer Science, Vol.
3196/2004, p400-417, 2004.

[6] W. Zagler and C. Beck, “FASTY - faster typing for disabled
persons,” Proceedings of the European Conference on Medical
and Biological Engineering, 2002.

[7] J. Li and G. Hirst, “Semantic Knowledgee in Word
Completion,” Proceedings of the 7th international ACM
SIGACCESS conference on Computers and accessibility, 2005.

[8] K. Grabski and T. Scheffer, “Sentence Completion,”
Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information
retrieval, 2004.

[9] S. Bickel, P. Haider, and T. Scheffer, “Predicting sentences
Using N-Gram Language Models,” Proceedings of the
conference on Human Language Technology and Empirical
Methods in Natural Language Processing, 2005.

[10] R. Hecht-Nielsen, “Confabulation Theory: The Mechanism of
Thought”, Springer, Aug. 2007.

[11] J. B. Rotter, M. I. Lah, and J. E. Rafferty, “Rotter Incomplete
Sentences Blank Second Edition manual,” New York:
Psychological Corporation, 1992.

[12] Christopher D. Manning, Hinrich Schütze, Foundations of Statistical
Natural Language Processing, MIT Press: 1999. ISBN 0-262-13360-1.

